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Repeating observations on the same subject has always been a boon to
experimenters and a headache to statisticians. Sometimes measures
repeated over time are the essence of the study, as in learning and
developmental studies, but just as often experimenters feel that
several observations of the same person. are. meaningful or preferable,
as in using the subject as his own control. Pretest-posttest seems
the rule rather than the exception. Whether two or twenty, repeated
observations lack the characteristic, statistical independence,
crucial to every inferential procedure save those which concentrate
on the correlations themselves.

Neophytes and risherphobes who run the non- parametric domain fig: l that
independence rules that kingdom no less sternly, perhaps more so for
lack of any rivals. And these soldiers of the king prove not so strong.

-We grant the strength and Clear result where independence prevails,
especially where backed by randomization. Every raw recruit in the
statistician army can be a general with that weapon in his arsenal.
But too few experimenters are willing to pay the price to achieve
randomization, that is, careful advance planning and extensive talking
to persuade people that the value is worth the effort. In the face of
repeated measures, how can we best manoeuvre when complete victory is
beyond our grasp? Do we attack, dig in--or retreat?

In this paper we describe a double frontal attack on some particular
repeated measures data, an attack which ca:, be mounted whenever the
measures have a factorial structure, i.e., wherever they have been

raper presented at the annual meeting of the American Educational Research
Association, New Orleans, February 28, 1973.



gathered according to some factorial design. The method is applicable,
however, wherever by design or by theory it is plausible to argue that
the data have some structure expressible in well behaved mathematical
farm.

The concept is by no means new, but practical execution requires
sophisticated computer programs. and we lack experience in the inter-
pretation of the results. A sophisticated computer program is at hand
in MultiVariance (Version 4-1, Finn, 1971) and a full elaboration of
the method will soon be published (Bock in press). We present an appli-
cation of the method that reveals some of.its power and some of its
challenges.

A Simple Example

Because the example to be discussed is somewhat messy, we begin with a
simple example which illustrates the essence of the attack, namely
transformation.of the repeated (non- independent) measures into new
meaningful, orthogonal variables before attempting statistical inference.

Suppose one tests a group of boys and a group:of girls on two geometry
problems. The solutions to the geometry problems yield two repeated
measures on the two independent groups. There is a design on the

_sure- (simple one-way design, problems A and B) and also on the
_Deets (also one-way, boys vs girls) .

Sufficient statistics for the usual normal-theory analysis are the four
means for problem and sexes plus the variances and covariances (or sums
of squares and cross products, of course). Look at the four means
first:

Boys

Girls

Means
Problem A Problem B

I.

Though there are four cells (4n observations if n boyS
there are not 4n independent degrees of freedom.

A girls)



The analysis is simPlified if the matrix of means is transformed by
a simple 2 x 2 matrix T,

1

which converts the two repeated measures into two other "measures",
namely their sum and difference. We now have

Tm!

Sum

Boys

Girls Y +
21 -Y 22

Difference

12

It is easy to verify that whatever the correlation between A and B, the
sum and difference are uncorrelated. Furthermore, these two new
dependent variables (sum and difference) are themselves, meaningful.
Separate univariate analysis of variance would be informative, but a
pooled analysis is more powerful,. as shown in table 1.

Source

Mean

Table 1

Interpretation of the Univariate Analysis of
Variance of Sum and Difference Scores

meaning of F-test

1 Geometry Problems

7e-

Sum Tests whether grand mean is zero. Not interesting.
Diffe ance Geometry problem main effect mean of differences

Groups (boys - girls) Sex xProblem Interactions

Sum Tests sex main effect
Difference Sex by:Problem interaction: difference of differences

Pooled estimate of error
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The essential feature of this technique is the use of an orthogonal
transformation to convert correlated measures to more tractable ones
before statistical analysis. With more-than two measures the- new
transformed variables are not usually -uncorrelated but the main pro-
cedures are identical. It is necessary to do a multivariate analysis
of the transformed measures, taking account of the entire covariance
tructure, not just the variances.: Where there is also a design on-

the subjects, the type of statistical tests one can make depends upon
the extent of equivalence in the covariance structure, i.e., the multi-
variate analog of homogeneity of variance. This first-illustration is
too simple to reveal the essence of the method,- but it does show how
the main effects of the repeated measures appear in the first half of
the table and the interactions with the design on the subjects appear
in the second half. A "sex effect" in the difference scores is exactly
what one means by a "sex-problem interaction".

The Main Example

The data that serve as the basis for our example were obtained in a study
conducted by Keeton (1973). The design is described in- Table 2.
Exploratory data analysis led the author to create a new variable,
.Scoring, namely the number of digits recalled correctly from the first
half of the series (primacy) and from the second half (recency).

..Results were averaged for the three trials at each of the lengths 4 and
5, 6 and 7, 8 and 9 to arrive finally at the data labelled 4, 6 and- 8
in the sequel. (The middle digit was ignored for odd numbered length
Full details are available-in Keeton- (1973).

These aggregated repeated measures are reported in tables 3 and 4 for the
two independent groups of pupils, one from an inner-city (low SES) school
and'one from a suburban (high SES) school. Thus, tables 3 and 4 reveal
the 2 x 2 x 3 design on the repeated measures and together illustrate the
simple one-way design on the, subjects.

The hypothesis of primary interest was that the inner-city children
would score higher on the second half of the series than the suburban
children and vice versa for the first half. In analysis of variance
terminology, there would be a significant SES x Scoring interaction.
number of other hypotheses made a complex analysis desirable.

The Trans format .on and the Data

A 12 x 12 orthogonal matrix was generated that reflected the 2 x 2 x 3
design on the _epeated Measures. Multivariance (Finn, 1971) contains
a feature that makes this a-simple matter. The data are entered into



the program as 12 different dependent variables, taking care that the
order of entry corresponds to the.2 x 2 x 3 design. In this- example,
there are exactly 50 children in each group, yielding two 12 x 1 vectors
of means. Applying the 12 x 12 transformation matrix yields 12 new
variables for each group corresponding. to tLe main effects and inter-
actions of a 2 x 2 x 3 analysis of variance. The entries in the actual
matrix are fractional quantities dictated by the requireMent of ortho-
gonality, but the pattern is a familiar one; sample rows are shown.to
one decimal place in table 5. The structure of the vector of 'Means is
shown for comparison so that the meaning of the new "variables" can be
seen. Because one of the factors, length, has ordered, equally-spaced
levels, it suggests a model in which orthogonal polynomials are used
to study the linear and quadratic components of the variability due to
length. (In fact, such a model accounts for slightly more variance than
one containing only simple difference contrasts.) Use of orthogonal
polynomial coefficients accounts for the presence of zeros in table 5.

Results

A complete summary table is shown as table 6. Comparison with table '-
shows the same pattern of new variables within group effects, the lower
half representing all the. Group x (new variable) interactions. Both
.tests of mean vectors (Multivariate) show significance beyond .01, an
almost guaranteed result for the constant term because of the grand mean
itself. The significant test of groups as a whole shows that a fairly
complex pattern exists in the data.

Looking at the top half (constant), we see all but two univariate tests
significant beyond .01. This cannot be taken at face value because as
we noted,-when we go beyond two repeated measures the new variables are
not uncorrelated. A .look at the cross-product terms shows a number
of large entries relative. to the sums of squares. We have to turn to
the step-down tests,. a series of.step-wise -regression results with all
variables above a given one included in the regression equation. Note.
that .the new variable scoring 0?-10 is not even significant if we remove
the effect of the grand mean! This odd result is marked in left and
rightmargins with- e.

Only Mode and Scoring x Mode survive the step-down analyst' in the top
group. Looking below, however, we see several interaction. with Mode,
so we will not pursue the main effect..-. Before going farther, however,
let .us acknowledge that the step-down tests are order sensitive and as;.
the readers to accept the authors' word that various orders were tried
and the same robust effect emerged each time. Compliments are due
Multivariance '(i.e. Finn) again, in that repeated analyses changing only
the order of the dependent variables (c.r.their number) are both easy
and economical of computer time.. This is possible because only the
very last stage of the analysis need be redone, using most calculations
over again.



The effect of principal interest, SES x Scoring, is the first one below
the line in the bottom group, that is, G x (P-R). It is significant
both in univariate and step-down tests, no matter which variables are
entered before (above) it. The hypothesis is thus strongly and validly
supported, untainted by approximate F-tests or other adhocery. An
unusual reversal is marked by , where G x (V-A) appears significant
in the step- -down but not in univariate. This is apparently an artifact,
since it does not happen with other-orders.

As evidence of the truth of the maxim, "Be kind to your data and your
data will be kind to you," we'offer the seemingly unlikely three way
interactions (marked by *),Gx(V-A) x L2 and G x S x L1. Looking at
the sums of squares it is clear that the pooled Ll and L2 effects would
be significant, so we plot the means in figure 1.

The interesting G x S effect already mentioned turns out to be only part
of the story. There is a difference in the slopes of the lines
(G x S x Li), and a very interesting difference too! The lo SCS
(inner-city) children show a remarkably different pattern in recemy
from their primacy scores as length of series increases, while the Hi SES
(suburban) group is consistent. That finding led to a second study,
being reported tomorrow afternoon (Keeton and McLean, 1973).-

Mode of presentation (visual vs auditory) is confusing theoretically,
confounded experimentally and hopeless statistically. The confounding
occurred because the children sponaneously rehearsed the digits
verbally in the auditory presentation but not in the visual and because
auditory-always followed visual. None of this explains why the suburban
group did so poorly at the auditory task for series of length 8 and 9
(see figure 1, G x (V-A) x L). The graphs are plotted primarily to show
that when a result appears artifactual in the analysis, e.g. G x
its graph shows nothing, and when a result appears robust, e.g.
G x (V-A) x L, its graph reveals a likely source of effect. If we can't
interpret the results, is that Darrell Bock's fault?

Conclusions_

Given the availability of a powerful tool such as Multivariance, it-seems
doubtful we should ever analyze repeated measures other than as multi-
variate data Among the extensions not mentioned is the possibility of
using covariates, not usually possible because we have only one covariate
measure per person and (by definition) several repeated measures. The
covariates can be applied to each of the new "variables", though this
takes some extra work. (The transformatioth matrix has to be entered
via cards as part ofasuper-matrix andapxpidentity matrix, whereps
the number of covariates.)



The careful student of Bock-Finn will notice that this method is
applicable to a single group as well as to data from more complex
designs. The-authors now have data from a second year of the study
reported here, prnmising a future paper on non-orthogonal multivariate
analysis of covariance of repeated measures after orthogonal transformation
marinated and ser-ted with sour cream.
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